Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.925
Filtrar
1.
Front Immunol ; 15: 1343364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558799

RESUMO

Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.


Assuntos
Lesões Encefálicas Traumáticas , Vesículas Extracelulares , Humanos , Microglia/metabolismo , Macrófagos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Pulmão/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
2.
RNA ; 30(5): 570-582, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531653

RESUMO

RNA 2'-O-methylation (Nm) is highly abundant in noncoding RNAs including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA), and occurs in the 5' cap of virtually all messenger RNAs (mRNAs) in higher eukaryotes. More recently, Nm has also been reported to occur at internal sites in mRNA. High-throughput methods have been developed for the transcriptome-wide detection of Nm. However, these methods have mostly been applied to abundant RNAs such as rRNA, and the validity of the internal mRNA Nm sites detected with these approaches remains controversial. Nonetheless, Nm in both coding and noncoding RNAs has been demonstrated to impact cellular processes, including translation and splicing. In addition, Nm modifications at the 5' cap and possibly at internal sites in mRNA serve to prevent the binding of nucleic acid sensors, thus preventing the activation of the innate immune response by self-mRNAs. Finally, Nm has been implicated in a variety of diseases including cancer, cardiovascular diseases, and neurologic syndromes. In this review, we discuss current challenges in determining the distribution, regulation, function, and disease relevance of Nm, as well as potential future directions for the field.


Assuntos
RNA de Transferência , RNA , RNA/genética , RNA/metabolismo , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Nuclear Pequeno/metabolismo , RNA Ribossômico/metabolismo
3.
Pathol Res Pract ; 256: 155224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452584

RESUMO

Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sepse , Humanos , Piroptose/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
4.
Nat Commun ; 15(1): 2425, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499544

RESUMO

Up to 80% of the human genome produces "dark matter" RNAs, most of which are noncapped RNAs (napRNAs) that frequently act as noncoding RNAs (ncRNAs) to modulate gene expression. Here, by developing a method, NAP-seq, to globally profile the full-length sequences of napRNAs with various terminal modifications at single-nucleotide resolution, we reveal diverse classes of structured ncRNAs. We discover stably expressed linear intron RNAs (sliRNAs), a class of snoRNA-intron RNAs (snotrons), a class of RNAs embedded in miRNA spacers (misRNAs) and thousands of previously uncharacterized structured napRNAs in humans and mice. These napRNAs undergo dynamic changes in response to various stimuli and differentiation stages. Importantly, we show that a structured napRNA regulates myoblast differentiation and a napRNA DINAP interacts with dyskerin pseudouridine synthase 1 (DKC1) to promote cell proliferation by maintaining DKC1 protein stability. Our approach establishes a paradigm for discovering various classes of ncRNAs with regulatory functions.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Nucleares , Proteínas de Ciclo Celular
5.
Immun Inflamm Dis ; 12(3): e1209, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456619

RESUMO

BACKGROUND: Immunosenescence is a multifactorial stress response to different intrinsic and extrinsic insults that cause immune deterioration and is accompanied by genomic or epigenomic perturbations. It is now widely recognized that genes and proteins contributing in the process of immunosenescence are regulated by various noncoding (nc) RNAs, including microRNAs (miRNAs), long ncRNAs, and circular RNAs. AIMS: This review article aimed to evaluate the regulatore RNAs roles in the process of immunosenescence. METHODS: We analyzed publications that were focusing on the different roles of regulatory RNAs on the several aspects of immunosenescence. RESULTS: In the immunosenescence setting, ncRNAs have been found to play regulatory roles at both transcriptional and post-transcriptional levels. These factors cooperate to regulate the initiation of gene expression programs and sustaining the senescence phenotype and proinflammatory responses. CONCLUSION: Immunosenescence is a complex process with pivotal alterations in immune function occurring with age. The extensive network that drive immunosenescence-related features are are mainly directed by a variety of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs. Latest findings about regulation of senescence by ncRNAs in the innate and adaptive immune cells as well as their role in the immunosenescence pathways, provide a better understanding of regulatory RNAs function in the process of immunosenescence.


Assuntos
Imunossenescência , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular
6.
Biochem Pharmacol ; 222: 116107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438051

RESUMO

Cancer is a comprehensive classification encompassing more than 100 forms of malignancies that manifest in diverse tissues within the human body. Recent studies have provided evidence that aberrant epigenetic modifications are pivotal indicators of cancer. Epigenetics encapsulates DNA methyltransferases as a crucial class of modifiers. DNMTs, including DNMT3A, assume central roles in DNA methylation processes that orchestrate normal biological functions, such as gene transcription, predominantly in mammals. Typically, deviations in DNMT3A function engender distortions in factors that drive tumor growth and progression, thereby exacerbating the malignant phenotype of tumors. Consequently, such abnormalities pose significant challenges in cancer therapy because they impede treatment efficacy. Non-coding RNAs (ncRNAs) represent a group of RNA molecules that cannot encode functional proteins. Recent investigation attests to the crucial significance of regulatory ncRNAs in epigenetic regulation. Notably, recent reports have illuminated the complex interplay between ncRNA expression and epigenetic regulatory machinery, including DNMT3A, particularly in cancer. Recent findings have demonstrated that miRNAs, namely miR-770-5p, miR-101, and miR-145 exhibit the capability to target DNMT3A directly, and their aberration is implicated in diverse cellular abnormalities that predispose to cancer development. This review aims to articulate the interplay between DNMT3A and the ncRNAs, focusing on its impact on the development and progression of cancer, cancer therapy resistance, cancer stem cells, and prognosis. Importantly, the emergence of such reports that suggest a connection between DNMT3A and ncRNAs in several cancers indicates that this connecting axis offers a valuable target with significant therapeutic potential that might be exploited for cancer management.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Animais , Humanos , Metilação de DNA , Epigênese Genética , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
7.
Viruses ; 16(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38400018

RESUMO

Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Humanos , Flavivirus/genética , Zika virus/genética , Zika virus/metabolismo , Virulência , Replicação Viral , Proteínas/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Antivirais/metabolismo , Mamíferos
8.
Cancer Lett ; 587: 216691, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360139

RESUMO

Traditionally, non-coding RNAs (ncRNAs) are regarded as a class of RNA transcripts that lack encoding capability; however, advancements in technology have revealed that some ncRNAs contain small open reading frames (sORFs) that are capable of encoding micropeptides of approximately 150 amino acids in length. sORF-encoded micropeptides (SEPs) have emerged as intriguing entities in hepatocellular carcinoma (HCC) research, shedding light on this previously unexplored realm. Recent studies have highlighted the regulatory functions of SEPs in the occurrence and progression of HCC. Some SEPs exhibit inhibitory effects on HCC, but others facilitate its development. This discovery has revolutionized the landscape of HCC research and clinical management. Here, we introduce the concept and characteristics of SEPs, summarize their associations with HCC, and elucidate their carcinogenic mechanisms in HCC metabolism, signaling pathways, cell proliferation, and metastasis. In addition, we propose a step-by-step workflow for the investigation of HCC-associated SEPs. Lastly, we discuss the challenges and prospects of applying SEPs in the diagnosis and treatment of HCC. This review aims to facilitate the discovery, optimization, and clinical application of HCC-related SEPs, inspiring the development of early diagnostic, individualized, and precision therapeutic strategies for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Fases de Leitura Aberta , 60526 , Neoplasias Hepáticas/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
9.
Pathol Res Pract ; 255: 155219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401375

RESUMO

Globally, atherosclerosis a persistent inflammatory condition of the artery walls continues to be the primary cause of cardiovascular illness and death. The ncRNAs are important regulators of important signalling pathways that affect pyroptosis and the inflammatory environment in atherosclerotic plaques. Comprehending the complex interaction between pyroptosis and non-coding RNAs (ncRNAs) offers fresh perspectives on putative therapeutic targets for ameliorating cardiovascular problems linked to atherosclerosis. The discovery of particular non-coding RNA signatures linked to the advancement of atherosclerosis could lead to the creation of novel biomarkers for risk assessment and customised treatment approaches. A thorough investigation of the regulatory networks regulated by these non-coding RNAs has been made possible by the combination of cutting-edge molecular methods and bioinformatics tools. Studying pyroptosis-related ncRNAs in detail appears to be a promising way to advance our understanding of disease pathophysiology and develop focused therapeutic methods as we work to unravel the complex molecular tapestry of atherosclerosis. This review explores the emerging significance of non-coding RNAs (ncRNAs) in the regulation of pyroptosis and their consequential impact on atherosclerosis pathology.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Piroptose/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Aterosclerose/metabolismo , Biomarcadores , MicroRNAs/genética , RNA Longo não Codificante/genética
10.
Pathol Res Pract ; 255: 155170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38324964

RESUMO

Hepatitis is a worldwide health issue that causes inflammation of the liver and is frequently brought on by viral infections, specifically those caused by the hepatitis B and C viruses. Although the pathophysiological causes of hepatitis are complex, recent research indicates that noncoding RNAs (ncRNAs) play a crucial role in regulating apoptosis, an essential process for maintaining liver homeostasis and advancing the illness. Noncoding RNAs have been linked to several biological processes, including apoptosis. These RNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Distinct expression patterns characterising different stages of the disease have been discovered, indicating dysregulation of these non-coding RNAs in liver tissues infected with hepatitis. The complex interplay that exists between these noncoding RNAs and apoptotic effectors, including caspases and members of the Bcl-2 family, plays a role in the precarious equilibrium that regulates cell survival and death during hepatitis. The purpose of this review is to provide an overview of ncRNA-mediated apoptosis in hepatitis, as well as insights into possible therapeutic targets and diagnostic indicators.


Assuntos
Hepatite , MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/genética , Hepatite/genética
11.
Pathol Res Pract ; 255: 155155, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354486

RESUMO

This article provides a thorough investigation of the essential role of non-coding RNAs (ncRNAs) in the context of COVID-19, emphasizing their impact on the complex molecular dynamics of the viral infection. By conducting a systematic review of existing literature, we identify key ncRNAs involved in different stages of the viral life cycle, modulation of host immune response, and disease progression. The importance of microRNAs, long non-coding RNAs, and other ncRNA types emerges as influential factors in shaping the interaction between the host and the virus. Additionally, the study delves into the effective signaling pathways linked to COVID-19 pathogenesis, uncovering intricate molecular cascades that govern viral entry, replication, and host cell response. This exploration encompasses established pathways such as IL-6/JAK/STAT signaling, highlighting their interplay within the context of COVID-19. By synthesizing this knowledge, our aim is not only to enhance our understanding of the molecular complexities of COVID-19 but also to reveal potential therapeutic targets. Through elucidating the interaction between ncRNAs and signaling pathways, our article seeks to contribute to ongoing efforts in developing targeted interventions against COVID-19, ultimately advancing our ability to address this global health crisis.


Assuntos
COVID-19 , MicroRNAs , RNA Longo não Codificante , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 121(6): e2318008121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306478

RESUMO

Several structured noncoding RNAs in bacteria are essential contributors to fundamental cellular processes. Thus, discoveries of additional ncRNA classes provide opportunities to uncover and explore biochemical mechanisms relevant to other major and potentially ancient processes. A candidate structured ncRNA named the "raiA motif" has been found via bioinformatic analyses in over 2,500 bacterial species. The gene coding for the RNA typically resides between the raiA and comFC genes of many species of Bacillota and Actinomycetota. Structural probing of the raiA motif RNA from the Gram-positive anaerobe Clostridium acetobutylicum confirms key features of its sophisticated secondary structure model. Expression analysis of raiA motif RNA reveals that the RNA is constitutively produced but reaches peak abundance during the transition from exponential growth to stationary phase. The raiA motif RNA becomes the fourth most abundant RNA in C. acetobutylicum, excluding ribosomal RNAs and transfer RNAs. Genetic disruption of the raiA motif RNA causes cells to exhibit substantially decreased spore formation and diminished ability to aggregate. Restoration of normal cellular function in this knock-out strain is achieved by expression of a raiA motif gene from a plasmid. These results demonstrate that raiA motif RNAs normally participate in major cell differentiation processes by operating as a trans-acting factor.


Assuntos
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , RNA/metabolismo , Bactérias/genética , RNA Ribossômico/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
13.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338781

RESUMO

Until a few decades ago, most of our knowledge of RNA transcription products was focused on protein-coding sequences, which were later determined to make up the smallest portion of the mammalian genome. Since 2002, we have learnt a great deal about the intriguing world of non-coding RNAs (ncRNAs), mainly due to the rapid development of bioinformatic tools and next-generation sequencing (NGS) platforms. Moreover, interest in non-human ncRNAs and their functions has increased as a result of these technologies and the accessibility of complete genome sequences of species ranging from Archaea to primates. Despite not producing proteins, ncRNAs constitute a vast family of RNA molecules that serve a number of regulatory roles and are essential for cellular physiology and pathology. This review focuses on a subgroup of human ncRNAs, namely mtDNA-encoded long non-coding RNAs (mt-lncRNAs), which are transcribed from the mitochondrial genome and whose disparate localisations and functions are linked as much to mitochondrial metabolism as to cellular physiology and pathology.


Assuntos
RNA Longo não Codificante , Animais , Humanos , RNA Longo não Codificante/genética , DNA Mitocondrial/genética , RNA não Traduzido/metabolismo , Biologia Computacional , Proteínas , Mamíferos/metabolismo
14.
Biomolecules ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397438

RESUMO

Recently, we described the alteration of six miRNAs in the serum of autistic children, their fathers, mothers, siblings, and in the sperm of autistic mouse models. Studies in model organisms suggest that noncoding RNAs participate in transcriptional modulation pathways. Using mice, approaches to alter the amount of RNA in fertilized eggs enable in vivo intervention at an early stage of development. Noncoding RNAs are very numerous in spermatozoa. Our study addresses a fundamental question: can the transfer of RNA content from sperm to eggs result in changes in phenotypic traits, such as autism? To explore this, we used sperm RNA from a normal father but with autistic children to create mouse models for autism. Here, we induced, in a single step by microinjecting sperm RNA into fertilized mouse eggs, a transcriptional alteration with the transformation in adults of glial cells into cells affected by astrogliosis and microgliosis developing deficiency disorders of the 'autism-like' type in mice born following these manipulations. Human sperm RNA alters gene expression in mice, and validates the possibility of non-Mendelian inheritance in autism.


Assuntos
Transtorno Autístico , MicroRNAs , Criança , Adulto , Humanos , Masculino , Animais , Camundongos , Transtorno Autístico/genética , Sêmen/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Espermatozoides/metabolismo , RNA não Traduzido/metabolismo , Neuroglia/metabolismo
15.
J Biomed Sci ; 31(1): 25, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408962

RESUMO

Breast cancer is one of the most common malignancies that pose a serious threat to women's health. Reprogramming of energy metabolism is a major feature of the malignant transformation of breast cancer. Compared to normal cells, tumor cells reprogram metabolic processes more efficiently, converting nutrient supplies into glucose, amino acid and lipid required for malignant proliferation and progression. Non-coding RNAs(ncRNAs) are a class of functional RNA molecules that are not translated into proteins but regulate the expression of target genes. NcRNAs have been demonstrated to be involved in various aspects of energy metabolism, including glycolysis, glutaminolysis, and fatty acid synthesis. This review focuses on the metabolic regulatory mechanisms and clinical applications of metabolism-regulating ncRNAs involved in breast cancer. We summarize the vital roles played by metabolism-regulating ncRNAs for endocrine therapy, targeted therapy, chemotherapy, immunotherapy, and radiotherapy resistance in breast cancer, as well as their potential as therapeutic targets and biomarkers. Difficulties and perspectives of current targeted metabolism and non-coding RNA therapeutic strategies are discussed.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transformação Celular Neoplásica
16.
Brain Res ; 1830: 148810, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365130

RESUMO

Genetic selection for high growth rate has resulted in spectacular progress in feed efficiency in chickens. As feed intake and water consumption (WC) are associated and both are affected by environmental conditions, we evaluated WC and its hypothalamic regulation in three broiler-based research lines and their ancestor jungle fowl (JF) under heat stress (HS) conditions. Slow growing ACRB, moderate growing 95RB, fast growing MRB, and JF were exposed to daily chronic cyclic HS (36 °C, 9 h/d) or thermoneutral temperature (24 °C). HS increased WC in the MRB only. Arginine vasopressin (AVP) mRNA levels were decreased by HS in the MRB. Within the renin-angiotensin-aldosterone system (RAAS) system, renin expression was increased by HS in the JF, ACRB, and 95RB, while angiotensin I-converting enzyme (ACE), angiotensin II receptors (type 1, AT1, and type 2, AT2) were affected by line. The expression of aquaporin (AQP2, 7, 9, 10, 11, and 12) genes was upregulated by HS, whereas AQP4 and AQP5 expressions were influenced by line. miRNA processing components (Dicer1, Ago2, Drosha) were significantly different among the lines, but were unaffected by HS. In summary, this is the first report showing the effect of HS on hypothalamic water channel- and noncoding RNA biogenesis-related genes in modern chicken populations and their ancestor JF. These results provide a novel framework for future research to identify new molecular mechanisms and signatures involved in water homeostasis and adaptation to HS.


Assuntos
Aquaporina 2 , Galinhas , Animais , Galinhas/metabolismo , Aquaporina 2/metabolismo , Temperatura Alta , Resposta ao Choque Térmico , RNA não Traduzido/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária
17.
Elife ; 132024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240312

RESUMO

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Assuntos
Região Organizadora do Nucléolo , Precursores de RNA , Humanos , Animais , Região Organizadora do Nucléolo/genética , Região Organizadora do Nucléolo/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Cromossomos Humanos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Mamíferos/genética
18.
Cell Signal ; 115: 111035, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38182067

RESUMO

BACKGROUND AND AIM: Mitochondrial quality control (MQC) plays a significant role in the progression of liver fibrosis, with key processes such as mitochondrial fission, fusion, mitophagy and biogenesis maintaining mitochondrial homeostasis. To understand the molecular mechanisms underlying epigenetic regulation of mitochondrial quality control in liver fibrosis, with the aim of uncovering novel therapeutic targets for treating, mitigating, and potentially reversing liver fibrosis, in light of the most recent advances in this field. METHODS: We searched PubMed, Web of Science, and Scopus for published manuscripts using terms "mitochondrial quality control" "mitochondrial fission" "mitochondrial fusion" "mitochondrial biogenesis" "mitophagy" "liver fibrosis" "epigenetic regulation" "DNA methylation" "RNA methylation" "histone modification" and "non-coding RNA". Manuscripts were collated, studied and carried forward for discussion where appropriate. RESULTS: Mitochondrial fission, fusion, biogenesis, and mitophagy regulate the homeostasis of mitochondria, and the imbalance of mitochondrial homeostasis can induce liver fibrosis. Epigenetic regulation, including DNA methylation, RNA methylation, histone modifications, and non-coding RNAs, plays a significant role in regulating the processes of mitochondrial homeostasis. CONCLUSION: Mitochondrial quality control and epigenetic mechanisms are intricately linked to the pathogenesis of liver fibrosis. Understanding these molecular interactions provides insight into potential therapeutic strategies. Further research is necessary to translate these findings into clinical applications, with a focus on developing epigenetic drugs to ameliorate liver fibrosis by modulating MQC and epigenetic pathways.


Assuntos
Epigênese Genética , Cirrose Hepática , Humanos , Cirrose Hepática/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Metilação de DNA/genética , RNA não Traduzido/metabolismo , Dinâmica Mitocondrial
19.
Plant Physiol Biochem ; 207: 108399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277833

RESUMO

Non-coding RNAs (ncRNAs) are a special class of functional RNA molecules that are not translated into proteins. ncRNAs have emerged as pivotal regulators of diverse developmental processes in plants. Recent investigations have revealed the association of ncRNAs with the regulation of leaf senescence, a complex and tightly regulated developmental process. However, a comprehensive review of the involvement of ncRNAs in the regulation of leaf senescence is still lacking. This manuscript aims to summarize the molecular mechanisms underlying ncRNAs-mediated leaf senescence and the potential applications of ncRNAs to manipulate the onset and progression of leaf senescence. Various classes of ncRNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are discussed in terms of their regulatory mechanisms in leaf senescence. Furthermore, we explore the interactions between ncRNA and the key regulators of senescence, including transcription factors as well as core components in phytohormone signaling pathways. We also discuss the possible challenges and approaches related to ncRNA-mediated leaf senescence. This review contributes to a further understanding of the intricate regulatory network involving ncRNAs in leaf senescence.


Assuntos
MicroRNAs , RNA Longo não Codificante , Senescência Vegetal , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Interferente Pequeno
20.
Oncogene ; 43(9): 615-623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38287115

RESUMO

RNA processing includes post-transcriptional mechanisms controlling RNA quality and quantity to ensure cellular homeostasis. Noncoding (nc) RNAs that are regulated by these dynamic processes may themselves fulfill effector and/or regulatory functions, and recent studies demonstrated the critical role of RNAs in organizing both chromatin and genome architectures. Furthermore, RNAs can threaten genome integrity when accumulating as DNA:RNA hybrids, but could also facilitate DNA repair depending on the molecular context. Therefore, by qualitatively and quantitatively fine-tuning RNAs, RNA processing contributes directly or indirectly to chromatin states, genome organization, and genome stability. B lymphocytes represent a unique model to study these interconnected mechanisms as they express ncRNAs transcribed from key specific sequences before undergoing physiological genetic remodeling processes, including V(D)J recombination, somatic hypermutation, and class switch recombination. RNA processing actors ensure the regulation and degradation of these ncRNAs for efficient DNA repair and immunoglobulin gene remodeling while failure leads to B cell development alterations, aberrant DNA repair, and pathological translocations. This review highlights how RNA processing mechanisms contribute to genome architecture and stability, with emphasis on their critical roles during B cell development, enabling physiological DNA remodeling while preventing lymphomagenesis.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Linfócitos B/metabolismo , Cromatina/metabolismo , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...